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ABSTRACT
Heterogeneous servers, in manufacturing and service systems,
may have different speeds and different quality levels for the pro-
vided service or good For a two-server queueing model, we for-
mulate the job routing problem for minimizing the stationary
weighted sum of the expected time spent in the system and the
number of unsatisfied customers per time unit. Using a Markov
decisionprocess approach,weprove that theoptimal routingpol-
icy of jobs to service is a threshold policy that depends on the
queue length. When the number of waiting jobs in the queue is
below a certain threshold, only one server should work and the
other one remains idle. At or above this threshold, both servers
should serve jobs. This is an extension of the known result where
only the heterogeneity in speed is considered.

1. Introduction

Inmanufacturing and service systems, the operation speed usually interacts with the
quality of the provided service or treatment. In some cases, high speed may mean
not enough attention, which leads to a poor quality of resolution. In other cases,
high speed may be related to a well-trained and experienced human capacity, which
implies high quality of resolution. Examples with speed–quality interaction include
call centers where the call conversation duration is correlated to the call resolution
probability[7,31], or healthcare systems where the treatment lengthmay interact with
the health deterioration level after the treatment[30].

We consider the problem of dynamically and optimally controlling a queueing
systemwith two heterogeneous servers. Heterogeneity is in terms of speed and qual-
ity of the provided service. Managers are then concerned at the same time by the
customer sojourn time and the quality of the provided service. In what follows, we
review the literature related to this paper.

The slow server problem. This work is most closely related to the slow server
problem literature, which has a long history. The slow server problem focuses on
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2 B. LEGROS AND O. JOUINI

routing customers to two heterogeneous servers so as to minimize the mean time in
the system. Heterogeneity is in terms of speed, i.e., one server is fast and the other
is slow in the sense of mean service time. The main question is what to do with the
slow server. For instance, consider the situation where the fast server is busy and
the queue is not empty. On the one hand, it is interesting to use the slow server in
order to reduce the waiting time in the queue of a given waiting customer. On the
other hand, it may also happen that the fast server becomes free after a short time
and could have finished the service of this waiting customer before its termination
at the slow server.

Krishnamoorthi[15] was the first to consider the slow server problem. Under
elementary assumptions, he shows that the fast server should always be used, and
the slow server should only be used when the fast server is busy and the number
of customers waiting in the queue exceeds a certain threshold. Rigorous proofs for
the optimality of this threshold policy are provided using Markov decision pro-
cess (MDP) approaches or sample path arguments[16,18,28]. Using value iteration,
Koole[14] provides a simpler version of this proof. Viniotis and Ephremides[27] con-
sider various extensions of the result, for example, for the case of Erlang servers.
Rykov and Efrosinin[26] also extend the proof of the optimality of a threshold policy
including service costs.

Results concerning the optimal routing policy formore than two servers aremuch
more challenging to obtain. The growing dimensionality of the underlying state
space is the reason for the difficulty. Weber[29] uses coupling arguments to show
that whenever a job is routed, it should always be routed to the fastest available
server, but he only provides a conjecture that the optimal routing follows a state-
dependent threshold policy. Two papers claim to have proved the optimality of the
state-dependent threshold policy. The first one,[25] uses value iteration to show that
the optimal value function satisfies monotonicity properties. The second one,[19]

uses a linear programming formulation and sample path analysis. However, de
Véricourt and Zhou[8] prove the incompleteness of the proofs provided in these two
papers, and the problem remains open.

Other papers consider the search for good routing heuristics. For the two-server
case, Rubinovitch[24] compares between different non-idling policies, so as to deter-
mine whether or not the slow server should be used in order to minimize the sta-
tionary expected sojourn time in the system. He shows that a good policy is a
threshold policy based on the traffic intensity. Cabral[6] extends this result to the
multi-server casewith uninformed customers. The problemunder theHalfin–Whitt
heavy-traffic limit regime is also investigated. For a call center application, Armony
and Ward[2] consider a queueing systems with heterogeneous agent pools. They
address the customer routing problem subject to a fairness constraint on the work-
load division. They show that the optimal policy is a threshold policy based on the
number of customers in the system. Further asymptotic results include Refs.[1,3,4].

Recently, the extension of the slow server problem to queueing systems with
unreliable servers is addressed. Özkan and Kharoufeh[21] differentiate the two
servers by their service rates and reliability attributes. The slow server is perfectly
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reliable while the fast server is subject to random failures. The objective is to min-
imize the stationary average number of customers in the system. Using an MDP
approach, the authors prove that it is always optimal to route customers to the fast
server when it is available, irrespective of its failure and repair rates. For the slow
server, the optimal policy is a threshold policy that depends on the queue length.
Other related literature include Refs.[9,22].

The slow server problem with quality of resolution. Despite its prevalence in
practice, the literature has rarely addressed the slow server routing problem by
including service quality-related factors. Two exceptions, belonging to the call center
operations management literature, are ref.[7] and ref.[31]. de Véricourt and Zhou[7]

analyze the routing problem in a call center where a customer immediately calls back
when her problem is not appropriately resolved. The call quality is defined through a
call resolution probability, i.e., the probability that the customer is satisfied and does
not call back for the same problem. Servers have different call resolution probabil-
ities and different service rates. They address the dynamic control problem under
the objective of minimizing the expected total time of call resolution. For the two-
server case, they prove that a threshold policy is optimal. A call should be routed to
the server with the highest resolution rate (resolution probability times service rate)
whenever possible. The other server will be used only when the number of waiting
calls in the queue exceeds a certain threshold. Partial characterization of the optimal
policy and practical heuristics are given for the multi-server case.

The resolution rate policy is however shown to performpoorly under an objective
that involves the callback probability[20]. Under the asymptotic many-server qual-
ity and efficiency driven regime, Zhan and Ward[31] extend the analysis of Ref.[7],
by considering similar modeling and assumptions, but a more general objective in
terms of a weighted sum of the expected waiting time and the callback rate. They
approximate this asymptotic problem by a diffusion control problem. The efficiency
of the analytic diffusion solution is then validated through simulation.

Although callbacks may be an appropriate measure of quality in some contexts
such as technical call centers[13,17], it is not the case for many other manufacturing
and service systems where unsatisfied customers defect rather than comeback to the
system. In contrast to the existing literature, in the current paper, we assume that a
customer does not return after an unsuccessful service. Such situations occur for
example in commercial call centers where agents have various selling abilities, or in
make-to-order manufacturing firms where an unsatisfied customer with a long lead
time may switch to competitors[11].

Contributions. Using an MDP approach, we address the optimal routing of
customers in service for the two-server problem under the objective of minimiz-
ing the stationary weighted sum of the expected time spent in the system and the
unsatisfied customer rate. We prove that the optimal routing policy is a threshold
policy that depends on the queue length.When the number of waiting customers in
the queue is below a certain threshold, only one server should work and the other
one remains idle. At or above this threshold, both servers should serve jobs. This is
similar to the known result where only the heterogeneity in speed is considered.
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The complexity added by the quality of resolution is that one server is not nec-
essarily better than the other one. The value of our analysis in comparison with
existing ones is that no assumptions are made on the preference for one given
server. The approach for the proof of the threshold policy consists of three steps.
In the first step, we prove that the number of busy servers increases with the queue
size. In the second step, we prove that under the infinite horizon, having the two
servers idling is not optimal. Finally in the third step, we prove that there can-
not be changes in the prioritization of one server as a function of the system
states.

Structure of the paper. In Section 2, we provide the problem formulation. Using
anMDP approach, we prove in Section 3 that the optimal policy is of threshold type.
A numerical illustration of the optimal policy is also provided.We finally give a brief
conclusion.

2. Problem formulation

Consider a queueing system with a single customer type and two parallel servers,
servers 1 and 2. Customers arrive, at a single first come first served (FCFS) infinite
queue, according to a Poisson process with rate λ. Service times are independent and
exponentially distributedwith rateμi for server i, i ∈ {1, 2}. Once server i completes
a service, the customer is either satisfied with probability 1 − αi or unsatisfied with
probability αi, i ∈ {1, 2}. An unsatisfied customer defects, and this is considered as
a loss of goodwill. To ensure stability, we assume that λ < μ1 + μ2. The stationary
performance measures of interest are the customer expected time spent in the sys-
tem, denoted by E(R), and the production rate (throughput) of server i, denoted by
Ti, i ∈ {1, 2}.

Consider now the set of all non-preemptive non-anticipating FCFS routing poli-
cies for the routing of customers in service. At any point of time, we want to decide
for the first customer in the queue (if any) whether to keep her in the queue, or
to serve her by an available server (if any). We combine two objectives to account
for the trade-off between minimizing the time spent in the system and maximizing
customer satisfaction about the provided service. Concretely, the goal is to find the
optimal routing policy which minimizes the following weighted sum:

α1T1 + α2T2 + cRE(R), (1)

where the coefficient cR (cR ≥ 0) translates the relative importance given, by the sys-
tem manager, to the expected time spent in the system compared to the number of
unsatisfied customers per time unit. Without loss of generality, the cost per unsat-
isfied customer is one.

We propose to formulate the routing problem as an MDP and next use the value
iteration technique to prove the form of the optimal policy. We formulate the prob-
lem via the definition of states, the transition structure and the possible actions. In
order to completely separate transitions and actions, we allow for idling possibilities,
i.e., after an arrival or a service completion there is no automatic routing in service.
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States definition.Let us denote by x the number of customers in the queue, x ≥ 0.
The state of the server pair is described through the symbols 0, 1, 2 and 1/2. State 0
is a situation where the two servers are idle. State i is a situation where only server
i is working, i ∈ {1, 2}. State 1/2 corresponds to a situation where the two servers
are working. A state of the system is thus completely defined by the couple (i, x),
i ∈ {0, 1, 2, 1/2} and x ≥ 0.

Transitions. We denote the transition rate from state (i, x) to state (i′, x′) by
q(i,x),(i′,x′). Hence, for i, i′ ∈ {0, 1, 2, 1/2} and x, x′ ≥ 0, we have

q(i,x),(i′,x′) =

⎧⎪⎪⎨
⎪⎪⎩

λ, if i′ = i, x′ = x + 1, for i ∈ {0, 1, 2, 1/2}, x ≥ 0,
μ1, if i = 1, i′ = 0 or i = 1/2, i′ = 2 and x′ = x, for x ≥ 0,
μ2, if i = 2, i′ = 0 or i = 1/2, i′ = 1 and x′ = x, for x ≥ 0,
0, otherwise,

which corresponds to arrivals and service departures.
Actions. At each instant of time when at least one customer is in the queue and

one server is idling, we are allowed to serve or not this customer and eventually to
decide which server to choose. A cost of one is counted per unsuccessful service.
This may discourage to route a customer automatically to the first available server.
On the other hand, waiting customers incur costs. It is therefore important not to
postpone toomuch a start of service. Hence, decisions have to be taken in situations
where (i) at least one customer is in the queue and (ii) at least one server is idle. We
have to decide the following:

- How many customers should be routed in service (0, 1 or 2)?
- In the case where only one customer should be served, which server should be
preferred?

We choose to discretize our continuous-time model. This is possible because it
is uniformizable (Section 11.5.2. in Ref.[23]). We next show that our model satis-
fies the uniformization condition. In all states where the two servers are busy, there
are three possible events: an arrival or a service completion from server 1 or from
server 2. The rate out of each of these states is λ + μ1 + μ2. Yet, in all states where
only one server is busy, there are only two possible events: an arrival or a service
completion from the busy server. When the two servers are idling only an arrival
can occur. By adding fictitious transitions from a state to itself, we allow that the
rate out of each state is λ + μ1 + μ2, without exception, for every policy.

We are considering infinite horizon average costs. It is then optimal to schedule
customers only at service completion and arrival times: We consider the embed-
ded discrete-time Markov decision chain by looking at the system only at transi-
tion instants. They occur according to a Poisson process with rate λ + μ1 + μ2. The
instantaneous holding costs for the embedded chain count for thewhole period until
the next transition. If it is optimal to keep a server idle at a given time, then the action
remains optimal until the next event in the system. This result follows directly from
the continuous-time Bellman equation ([23], Chapter 11).
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We formulate a two-step value function, in order to separate transitions and
actions and simplify the involved expressions. We define the dynamic program-
ming value functionsUn(., .) andVn(., .) over n ≥ 0 steps, depending on the state
of the system (the first variable is the state of the server pair, and the second vari-
able is the number of customers in the queue). We express Vn+1(., .) in Vn(., .) in
the following way. First, the holding costs until the next jump are incurred by the
cost function c(., .), defined as c(0, x) = cR

λ
x, c(i, x) = cR

λ
(x + 1) for i = 1, 2 and

c(1/2, x) = cR
λ
(x + 2), to account for the time spent in the system by a given cus-

tomer. A cost of 1 is incurred per unsuccessful service. One of three events can hap-
pen: an arrival with probability λ

λ+μ1+μ2
, a departure from server 1 with probability

μ1
λ+μ1+μ2

or a departure from server 2 with probability μ2
λ+μ1+μ2

. We assume without
loss of generality thatλ + μ1 + μ2 = 1, such that the rate out of each state is equal to
1. The rates are therefore considered as transition probabilities. We thus may write

Vn+1(0, x) = cR
λ
x + λUn(0, x + 1) + (μ1 + μ2)Un(0, x),

Vn+1(1, x) = cR
λ

(x + 1) + λUn(1, x + 1) + μ1(Un(0, x) + α1) + μ2Un(1, x),

Vn+1(2, x) = cR
λ

(x + 1) + λUn(2, x + 1) + μ1Un(2, x) + μ2(Un(0, x) + α2),

Vn+1(1/2, x) = cR
λ

(x + 2) + λUn(1/2, x + 1)

+ μ1(Un(2, x) + α1) + μ2(Un(1, x) + α2), (2)

with

Un(0, x) =

⎧⎪⎨
⎪⎩
Vn(0, 0), for x = 0
min(Vn(0, 1),Vn(1, 0),Vn(2, 0)), for x = 1
min(Vn(0, x),Vn(1, x − 1),Vn(2, x − 1),Vn(1/2, x − 2)), for x > 1,

Un(i, x) =
{
Vn(i, 0), for x = 0
min(Vn(i, x),Vn(1/2, x − 1)), for x > 0,

for i ∈ {1, 2}, and
Un(1/2, x) = Vn(1/2, x),

for n, x ≥ 0. We choose for simplicityU0(., .) = 0 andV0(., .) = 0. As explained in
the next Section, the convergence of the value function is independent of choice of
the initial condition.

For each n > 0 and each state (i, x) (i ∈ {0, 1, 2, 1/2} and x ≥ 0), there is a mini-
mizing action: serve two customers, serve one customerwith server i (i = 1 or i = 2)
or do not serve any customer. For a fixed n (n > 0), the function

{0, 1, 2, 1/2} × N

→ {serve 2 customers, serve one customer with server i, do not serve},
is referred to as the customer routing policy at iteration n.
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Remark. We assume in our modeling that a job cannot switch from one server
to the other during service. In the opposite case, the optimal policy is known from
Ref.[10] since the system can be seen as an adjustable service rate queueing model.
Server i working alone is associated to a cost of αiμi and a service rate of μi (i =
1, 2) and both servers working together corresponds to a cost of α1μ1 + α2μ2 and a
service rate of μ1 + μ2. The optimal policy would then be a two-thresholds policy.
Under a first threshold, the server with the lowest product αiμi (i = 1, 2) would be
working alone, between this first threshold and a second one the server with the
highest service rate would be working alone, and above this second threshold both
servers should work.

3. Optimal routing

One way of obtaining the infinite horizon average optimal actions is to use the value
iteration technique introduced by Ref.[5] and Ref.[12], by recursively evaluating Vn

using Equation (2), for n ≥ 0. In Theorem 3.1, we prove by induction on the value
function that the optimal policy is of threshold type. We prove that if some struc-
tural properties defining the threshold structure of the optimal policy are satisfied
forVn, then these properties are satisfied forVn+1. They therefore hold for every n.
As n tends to infinity, the optimal policy converges to the unique average optimal
policy, which is thus also of threshold type. This convergence result is ensured by
Theorem 8.10.1 in Ref.[23] since our problem satisfies the conditions of the theo-
rem (countable state set, finite set of actions and uniformizable system). The proof
of convergence to the average optimal policy is an important result in the MDP
literature. It is based on showing that the iteration fromVn toVn+1 is a contraction
mapping, as stated in Theorem 6.2.3 in Ref.[23]. This Theorem also proves that the
optimal infinite horizon policy is independent of the choice of V0. This is why one
can simply chooseV0(., .) = 0.

3.1. The result

Theorem 3.1. The optimal routing policy is of threshold type. There exists a threshold
u (u > 0) on the queue length x such that

� if 0 ≤ x < u, the optimal action is to maintain only one server idling;
� if x ≥ u, it is optimal to have both servers busy.

The proof of Theorem3.1 consists of three steps. They are first commented below.
They are next proved in Section 3.2.

Step 1. The first step consists of proving that the number of servers which should be
active follows a threshold policy. This threshold policy is characterized by the fact
that if serving a customer is optimal in x, then serving a customer is also optimal
in x + 1. Sufficient conditions for this are

Vn(0, x + 1) −Vn(i, x) ≥ 0 =⇒ Vn(0, x + 2) −Vn(i, x + 1) ≥ 0,
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and

Vn(i, x + 1) −Vn(1/2, x) ≥ 0 =⇒ Vn(i, x + 2) −Vn(1/2, x + 1) ≥ 0,

for i = 1, 2. These conditions are satisfied if

Vn(0, x + 2) +Vn(i, x) −Vn(0, x + 1) −Vn(i, x + 1) ≥ 0,

and

Vn(i, x + 2) +Vn(1/2, x) −Vn(i, x + 1) −Vn(1/2, x + 1) ≥ 0,

for i = 1, 2. The difference in the analysis here compared to that in Ref.[18] or
Ref.[14] is that we do not make a specific assumption on which server should be
prioritized. The difficulty in the choice for server 1 or server 2 can be seen in the
difference

Vn+1(1, x) −Vn+1(2, x) = λ(Un(1, x + 1) −Un(2, x + 1))
+ μ1(Un(0, x) −Un(2, x))
+ μ2(Un(1, x) −Un(0, x)) + μ1α1 − μ2α2,

for x ≥ 0. With the last term, one could think of the routing control that routes
customers in priority to the server that has the lowest unsuccessful service rate
(minimum of μiαi for i ∈ {1, 2}). However, this simple rule does not propa-
gate through value iterations because of the term μ1(Un(0, x) −Un(2, x)) +
μ2(Un(1, x) −Un(0, x)) which can be either positive or negative. So, further
assumptions are required to determine which server to prioritize.

Step 2. This step consists of proving, under an infinite horizon, that having the two
servers idling at the same time cannot be optimal, as long as a waiting customer
represents a strictly positive cost for the system. However, this statement cannot
be proven by induction since both servers idling can be optimal under a finite
horizon. For small n, not serving customers is often optimal: the costs of hold-
ing a customer in the queue over a short period can be cheaper than the costs
of unsuccessful services. As an illustration, consider the problem with parameter
values λ = 0.13, μ1 = 2, μ2 = 5, α1 = 0.1, α2 = 1 and cR = 0.005. Using Equa-
tions (2) for n = 5, we deduce that it is optimal to not serve any customer.
Since we are considering infinite horizon average performance, it would
be tempting to first state that it is not optimal to have the two servers
idling at the same time and next rewrite the definition of Un such that
Un(0, x) = min(Vn(1, x − 1),Vn(2, x − 1),Vn(1/2, x − 2)) for x > 1 and
Un(0, 1) = min(Vn(1, 0),Vn(2, 0)). Then less structural properties would need
to be proven in the induction step fromVn toUn. However, this would force the
system to make non-optimal decisions under finite horizon, and consequently
not all structural properties required in Step 1 would to hold. For instance, as
shown later in the induction from Vn to Un in the proof for Relation (6), the
proof of the last caseUn(0, x + 2) = Vn( j, x + 1) andUn(i, x) = Vn(i, x) would
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not go through. Instead of using a value iteration approach, we will prove this
step of the proof by following a sample path approach.

Step 3. Assuming a threshold policy for the number of used servers (Step 1) and
non-idling policies for both servers (Step 2), this last step consists of proving that
whenever it is optimal to use only one server, the preference of which server it is
cannot change.

3.2. Proof of theorem 3.1

In what follows, we give the detailed proofs for the theorem in three steps.
Step 1.We define the class of functionsF from {0, 1, 2, 1/2} × N toR as follows:

f ∈ F if for x ≥ 0, we have

f (i, x + 1) ≥ f (i, x), for i = 0, 1, 2, 1/2, (3)
f (1/2, x) ≥ f (i, x) ≥ f (0, x), for i = 1, 2, (4)
f (i, x + 2) + f (1/2, x) ≥ f (i, x + 1) + f (1/2, x + 1), for i = 1, 2, (5)
f (0, x + 2) + f (i, x) ≥ f (0, x + 1) + f (i, x + 1), for i = 1, 2, (6)
f (1/2, x + 1) + f (i, x) ≥ f (i, x + 1) + f (1/2, x), for i = 1, 2, (7)
f (i, x + 1) + f (0, x) ≥ f (0, x + 1) + f (i, x), for i = 1, 2. (8)
f (i, x + 1) + f ( j, x) ≥ f (0, x + 1) + f (1/2, x), for i, j = 1, 2, i �= j, (9)
f (0, x) + f (1/2, x) ≥ f (1, x) + f (2, x). (10)

If Relation (5) is true for Vn, then Vn(i, x + 2) −Vn(1/2, x + 1) ≥ Vn(i, x +
1) −Vn(1/2, x), for x ≥ 0. If Vn(i, x + 1) −Vn(1/2, x) ≥ 0, we thus deduce that
Vn(i, x + 2) −Vn(1/2, x + 1) ≥ 0, for x ≥ 0. Consequently, if using server j is opti-
mal when x customers are in the queue and server i is busy (i �= j), then using server
j is also optimal when x + 1 customers are in the queue and server i is busy (i �= j).
With Relation (6), the same observation holds for server j when server i is idle.
Relations (5) and (6) for Vn (n ≥ 0) are then sufficient to prove that the optimal
policy is of threshold type.

Observe that summing up Relation (5) and Relation (6) in which we replace x by
x + 1, we obtain

f (0, x + 3) + f (1/2, x) ≥ f (1/2, x + 1) + f (0, x + 2). (11)

Note also that summing up Relation (5) and Relation (7) leads to the convexity in x
of f (i, x); summing up Relation (5) and Relation (7) in which we replace x by x + 1
leads to the convexity in x of f (1/2, x); and summing up Relation (6) and Relation
(8) leads to the convexity in x of f (0, x).

In Table 1, we summarize the required relations to prove each relation (A) in the
propagation from Vn to Un (minimizing actions) and (B) in the propagation from
Un toVn+1.

In what follows we prove by induction on n that both Vn and Un are in F . For
x ≥ 0,V0(., x) = U0(., x) = 0. ThenV0,U0 ∈ F .
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Table . Summary of the proof.

Follows from

Relation to prove (A) (Vn toUn) (B) (Un toVn+1)

() (), () ()
() (), () ()
() () (), (), ()
() (), (), () (), ()
() (), () (), ()
() (), (), (), (), (), () ()
() (), () (), ()
() (), (), () ()

Induction fromVn toUn.Assume now that for a given n ≥ 0,Vn ∈ F , and let us
prove thatUn ∈ F .

Relation (3):We have for x ≥ 0,

Un(0, x) ≤ Vn(0, x), (12)
Un(0, x) ≤ Vn(i, x − 1), for x ≥ 1, (13)
Un(0, x) ≤ Vn(1/2, x − 2), for x ≥ 2. (14)

Case 1: Un(0, x + 1) = Vn(0, x + 1). Combining Inequality (12) with Relation
(3) for Vn proves Relation (3) for Un. If Un(0, x + 1) = Vn(i, x), then
combining Inequality (13) with Relation (3) in the case x ≥ 1 for Vn

proves Relation (3) forUn. In the case x = 1, combining Inequality (12)
with Relation (4) forVn proves Relation (3) forUn.

Case 2: Un(0, x + 1) = Vn(1/2, x − 1). Combining Inequality (14) in the case
x ≥ 2 with Relation (3) forVn proves Relation (3) forUn. In the case x =
1, combining Inequality (13) with Relation (4) forVn proves Relation (3)
forUn.

We have, for x ≥ 0 and i ∈ {1, 2},
Un(i, x) ≤ Vn(i, x), (15)
Un(i, x) ≤ Vn(1/2, x − 1), for x ≥ 1. (16)

Case 1: Un(i, x + 1) = Vn(i, x + 1). Combining Inequality (15) with Relation
(3) forVn proves Relation (3) forUn.

Case 2: Un(i, x + 1) = Vn(1/2, x). Combining Inequality (16) with Relation (3)
in the case x ≥ 1 for Vn proves Relation (3) for Un. In the case x = 1,
combining Inequality (15) with Relation (4) for Vn proves Relation (3)
forUn.

Relation (4):We have, for x ≥ 0 and i ∈ {1, 2},
Un(0, x) ≤ Vn(0, x), (17)
Un(0, x) ≤ Vn(i, x − 1), for x ≥ 1. (18)
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Case 1: Un(i, x) = Vn(i, x). Combining Inequality (17) with Relation (4) for Vn

proves Relation (4) forUn.
Case 2: Un(i, x) = Vn(1/2, x − 1). Combining Inequality (18) with Relation (4)

forVn proves Relation (4) forUn.
We have, for x ≥ 0 and i ∈ {1, 2},

Un(i, x) ≤ Vn(1/2, x − 1) for x ≥ 1. (19)

Also, Un(1/2, x) = Vn(1/2, x). Then combining Inequality (19) with
Relation (3) forVn proves Relation (4) forUn.

Relation (5):We have, for x ≥ 0 and i ∈ {1, 2},
Un(i, x + 1) +Un(1/2, x + 1) ≤ Vn(i, x + 1) +Vn(1/2, x + 1), (20)
Un(i, x + 1) +Un(1/2, x + 1) ≤ Vn(1/2, x) +Vn(1/2, x + 1). (21)

Also,Un(1/2, x) = Vn(1/2, x).
Case 1: Un(i, x + 2) = Vn(i, x + 2). Combining Inequality (20) with Relation

(5) forVn proves Relation (5) forUn.
Case 2: Un(i, x + 2) = Vn(1/2, x + 1). Then Inequality (21) proves Relation (5)

forUn.
Relation (6):We have, for x ≥ 0 and i ∈ {1, 2},

Un(0, x + 1) +Un(i, x + 1) ≤ Vn(0, x + 1) +Vn(i, x + 1), (22)
Un(0, x + 1) +Un(i, x + 1) ≤ Vn(0, x + 1) +Vn(1/2, x), (23)
Un(0, x + 1) +Un(i, x + 1) ≤ Vn(1/2, x − 1) +Vn(1/2, x) for x ≥ 1, (24)
Un(0, x + 1) +Un(i, x + 1) ≤ Vn(i, x) +Vn(1/2, x), (25)
Un(0, x + 1) +Un(i, x + 1) ≤ Vn(i, x) +Vn(i, x + 1). (26)

Case 1: Un(0, x + 2) = Vn(0, x + 2) and Un(i, x) = Vn(i, x). Combining
Inequality (22) with Relation (6) for Vn proves Relation (6) for Un.
For x ≥ 1.

Case 2: Un(0, x + 2) = Vn(0, x + 2) andUn(i, x) = Vn(1/2, x − 1). Combining
Inequality (23) with Relation (11) forVn proves Relation (6) forUn. For
x ≥ 1.

Case 3: Un(0, x + 2) = Vn(1/2, x) and Un(i, x) = Vn(1/2, x − 1). Inequality
(24) proves Relation (6) forUn.

Case 4: Un(0, x + 2) = Vn(1/2, x) and Un(i, x) = Vn(i, x). Inequality (25)
proves Relation (6) forUn.

Case 5: Un(0, x + 2) = Vn(i, x + 1) and Un(i, x) = Vn(i, x). Inequality (26)
proves Relation (6) forUn.

Case 6: Un(0, x + 2) = Vn(i, x + 1) andUn(i, x) = Vn(1/2, x − 1). Combining
Inequality (25) with Relation (5) forVn proves Relation (6) forUn.

Case 7: If Un(0, x + 2) = Vn( j, x + 1) and Un(i, x) = Vn(i, x). Combining
Inequality (23) with Relation (9) forVn proves Relation (6) forUn.
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Relation (7):We have, for x ≥ 0 and i ∈ {1, 2},
Un(1/2, x) +Un(i, x + 1) ≤ Vn(1/2, x) +Vn(i, x + 1), (27)
Un(1/2, x) +Un(i, x + 1) ≤ 2Vn(1/2, x). (28)

Also,Un(1/2, x) = Vn(1/2, x).
Case 1: Un(i, x) = Vn(i, x). Combining Inequality (27) with Relation (7) for Vn

proves Relation (7) forUn.
Case 2: Un(i, x) = Vn(1/2, x − 1). Combining Inequality (28) with the convex-

ity in x ofVn(1/2, x) proves Relation (7) forUn.
Relation (8):We have for x ≥ 0 and i ∈ {1, 2}

Un(0, x + 1) +Un(i, x) ≤ Vn(0, x + 1) +Vn(i, x), (29)
Un(0, x + 1) +Un(i, x) ≤ 2Vn(i, x), (30)
Un(0, x + 1) +Un(i, x) ≤ Vn(1, x) +Vn(2, x), (31)
Un(0, x + 1) +Un(i, x) ≤ Vn(1/2, x − 1) +Vn(i, x), for x ≥ 1, (32)
Un(0, x + 1) +Un(i, x) ≤ 2Vn(1/2, x − 1), for x ≥ 1. (33)

Case 1: Un(i, x + 1) = Vn(i, x + 1) and Un(0, x) = Vn(0, x). Combining
Inequality (29) with Relation (8) forVn proves Relation (8) forUn.

Case 2: Un(i, x + 1) = Vn(1/2, x) and Un(0, x) = Vn(0, x). Combining
Inequality (31) with Relation (10) forVn proves Relation (8) forUn.

Case 3: Un(i, x + 1) = Vn(i, x + 1) and Un(0, x) = Vn(i, x). Combining
Inequality (30) with Relation (3) forVn proves Relation (8) forUn.

Case 4: Un(i, x + 1) = Vn(1/2, x) andUn(0, x) = Vn(i, x). Combining Inequal-
ity (30) with Relation (4) forVn proves Relation (8) forUn.

Case 5: Un(i, x + 1) = Vn(i, x + 1) andUn(0, x) = Vn(1/2, x − 1). Combining
Inequality (32) with Relation (5) forVn proves Relation (8) forUn.

Case 6: Un(i, x + 1) = Vn(1/2, x) and Un(0, x) = Vn(1/2, x − 1). Inequality
(33) with the convexity in x ofVn(1/2, x) proves Relation (8) forUn.

Relation (9):We have, for x ≥ 0 and i, j = 1, 2(i �= j),

Un(0, x + 1) +Un(1/2, x) ≤ Vn(0, x + 1) +Vn(1/2, x), (34)
Un(0, x + 1) +Un(1/2, x) ≤ Vn( j, x) +Vn(1/2, x), (35)
Un(0, x + 1) +Un(1/2, x) ≤ Vn(i, x) +Vn(1/2, x), (36)
Un(0, x + 1) +Un(1/2, x) ≤ Vn(1/2, x − 1) +Vn(1/2, x), for x ≥ 1. (37)

Consider the case i, j ∈ {1, 2} and i �= j.
Case 1: Un(i, x + 1) = Vn(i, x + 1) and Un( j, x) = Vn( j, x). Combining

Inequality (34) with Relation (9) forVn proves Relation (9) forUn.
Case 2: Un(i, x + 1) = Vn(1/2, x) and Un( j, x) = Vn( j, x). Inequality (35)

proves Relation (9) forUn.
Case 3: Un(i, x + 1) = Vn(i, x + 1) andUn( j, x) = Vn(1/2, x − 1). Combining

Inequality (36) with Relation (7) forVn proves Relation (9) forUn.
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Case 4: Un(i, x + 1) = Vn(1/2, x) and Un( j, x) = Vn(1/2, x − 1). Inequality
(37) proves Relation (9) forUn.

Relation (10):We have, for x ≥ 0,

Un(1, x) +Un(2, x) ≤ Vn(1, x) +Vn(2, x), (38)
Un(1, x) +Un(2, x) ≤ Vn(1/2, x − 1) +Vn(2, x), for x ≥ 1, (39)
Un(1, x) +Un(2, x) ≤ 2Vn(1/2, x − 1), for x ≥ 1. (40)

Also,Un(1/2, x) = Vn(1/2, x).
Case 1: Un(0, x) = Vn(0, x). Combining Inequality (38) with Relation (10) for

Vn proves Relation (10) forUn.
Case 2: Un(0, x) = Vn(2, x − 1). Combining Inequality (39) with Relation (7)

for Vn proves Relation (10) for Un. The case Un(0, x) = Vn(1, x − 1)
(x ≥ 1) is identical.

Case 3: Un(0, x) = Vn(1/2, x − 2). Combining Inequality (40) with the convex-
ity in x ofVn(1/2, x) proves Relation (10) forUn.

Induction fromUn toVn+1.Assume now that for a given n ≥ 0,Un ∈ F .We next
show thatVn+1 ∈ F .

Relations (3):We have, for x ≥ 0,

Vn+1(0, x + 1) −Vn+1(0, x) = λ(Un(0, x + 2) −Un(0, x + 1))

+(μ1 + μ2)(Un(0, x + 2) −Un(0, x + 1)) + cR
λ

.

Since Relation (3) holds for Un, the terms proportional to λ and μ1 + μ2

are positive. We thus conclude that Relation (3) is true forVn.
We have, for x ≥ 0 and i ∈ {1, 2},

Vn+1(i, x + 1) −Vn+1(i, x) = λ(Un(i, x + 2) −Un(i, x + 1))
+ μi(Un(0, x + 1) −Un(0, x))

+ μ j(Un(i, x + 1) −Un(i, x)) + cR
λ

.

Since Relation (3) holds for Un, the terms proportional to λ and μi and μ j are
positive. We deduce that Relation (3) is true forVn.

We have, for x ≥ 0 and i ∈ {1, 2},
Vn+1(1/2, x + 1) −Vn+1(1/2, x) = λ(Un(1/2, x + 2) −Un(1/2, x + 1))

+ μ1(Un(2, x + 1) −Un(2, x))

+ μ2(Un(1, x + 1) −Un(1, x)) + cR
λ

.

Since Relation (3) holds for Un, the terms proportional to λ and μi and μ j are
positive. Thus, Relation (3) is true forVn in this case.

Relation (4):We have, for x ≥ 0 and i ∈ {1, 2},
Vn+1(i, x) −Vn+1(0, x) = λ(Un(i, x + 1) −Un(0, x + 1)) + μiαi

+ μ j(Un(i, x) −Un(0, x)) + cR
λ

.
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Since Relation (4) holds for Un, the terms proportional to λ and μ j are positive.
Moreover, μiαi ≥ 0. Thus, Relation (4) is true forVn in this case.

We have, for x ≥ 0 and i ∈ {1, 2},
Vn+1(1/2, x) −Vn+1(i, x) = λ(Un(1/2, x + 1) −Un(i, x + 1))

+ μi(Un( j, x) −Un(0, x)) + μ jα j + cR
λ

.

Since Relation (4) holds for Un, the terms proportional to λ and μi are positive.
Moreover, μ jα j ≥ 0. Thus, Relation (4) holds forVn.

Relation (5):We have, for x ≥ 0,

Vn+1(i, x + 2) +Vn+1(1/2, x) −Vn+1(i, x + 1) −Vn+1(1/2, x + 1)
= λ(Un(i, x + 3) +Un(1/2, x + 1) −Un(i, x + 2) −Un(1/2, x + 2))

+ μi(Un(0, x + 2) +Un( j, x) −Un(0, x + 1) −Un( j, x + 1))
+ μ j(Un(i, x + 2) +Un(i, x) − 2Un(i, x + 1)),

for i, j = 1, 2 and i �= j. Since Relation (5) holds forUn, the term proportional to λ

is positive. Since Relation (6) holds for Un, the term proportional to μi is positive.
SinceUn(i, x) is convex in x, the term proportional to μ j is positive. Thus, Relation
(5) is true forVn.

Relation (6):We have, for x ≥ 0,

Vn+1(0, x + 2) +Vn+1(i, x) −Vn+1(0, x + 1) −Vn+1(i, x + 1)
= λ(Un(0, x + 3) +Un(i, x + 1) −Un(0, x + 2) −Un(i, x + 2))

+ μi(Un(0, x + 2) +Un(0, x) − 2Un(0, x + 1))
+ μ j(Un(0, x + 2) +Un(i, x) −Un(0, x + 1) −Un(i, x + 1)),

for i, j = 1, 2 and i �= j. Since Relation (6) holds forUn, the terms proportional to
λ and μ j are positive. Since Un(0, x) is convex in x, the term proportional to μi is
positive. We therefore deduce that Relation (6) holds forVn.

Relation (7):We have, for x ≥ 0,

Vn+1(1/2, x + 1) +Vn+1(i, x) −Vn+1(i, x + 1) −Vn+1(1/2, x)
= λ(Un(1/2, x + 2) +Un(i, x + 1) −Un(i, x + 2) −Un(1/2, x + 1))

+ μi(Un( j, x + 1) +Un(0, x) −Un(0, x + 1) −Un( j, x)),

for i, j = 1, 2 and i �= j. Since Relation (7) holds forUn, the term proportional to λ

is positive. Since Relation (8) holds for Un, the term proportional to μi is positive.
Therefore, Relation (7) is true forVn.

Relation (8):We have, for x ≥ 0,

Vn+1(i, x + 1) +Vn+1(0, x) −Vn+1(0, x + 1) −Vn+1(i, x)
= λ(Un(i, x + 2) +Un(0, x + 1) −Un(0, x + 2) −Un(i, x + 1))

+ μ j(Un(i, x + 1) +Un(0, x) −Un(0, x + 1) −Un(i, x)),



STOCHASTIC MODELS 15

for i, j = 1, 2 and i �= j. Since Relation (8) holds forUn, the terms proportional to
λ and μ j are positive. Therefore, Relation (8) is true forVn.

Relation (9):We have, for x ≥ 0,

Vn+1(i, x + 1) +Vn+1( j, x) −Vn+1(0, x + 1) −Vn+1(1/2, x)
= λ(Un(i, x + 2) +Un( j, x + 1) −Un(0, x + 2) −Un(1/2, x + 1))

+ μ j(Un(i, x + 1) +Un(0, x) −Un(0, x + 1) −Un(i, x)),

for i, j = 1, 2 and i �= j. Since Relation (9) holds forUn, the term proportional to λ

is positive. Since Relation (8) holds forUn, the term proportional to μ j is positive.
Therefore, Relation (9) holds forVn.

Relation (10):We have, for x ≥ 0,

Vn+1(0, x) +Vn+1(1/2, x) −Vn+1(1, x) −Vn+1(2, x)
= λ(Un(0, x + 1) +Un(1/2, x + 1) −Un(1, x + 1) −Un(2, x + 1)).

Since Relation (10) holds for Un, the term proportional to λ is positive. Therefore,
Relation (10) is true for Vn. This finishes the proof by induction of the first step of
the proof.

Step 2. We prove this step using sample path arguments. Consider a scheduling
policy π . Suppose that at time t1, under policy π , the two servers are free while at
least one customer is in the queue. This customer in the head of the line (oldest
customer in the queue) is referred to as HoL. Assume that HoL has waited w time
units so far (w ≥ 0). For stability reasons, since the queue discipline is FCFS, there
will be a later time instant, say t2, where HoL will be scheduled in service to Server
i (i = 1 or i = 2). This customer has waited w + t2 − t1 time units before starting
service and the probability of an unsuccessful service is αi (i = 1 or i = 2). The next
service starts at time t3 with t3 ≥ t2 by one of the two servers.

Let us now construct the policy π ′ which follows exactly the same actions as π

except for HoL. Policy π ′ schedules HoL to Server i at t1 instead of t2, but the next
start of service is at time t3 as under π . The difference between the two objective
functions under π and π ′ is then only related to the delaying or not of the start of
service of HoL. Under π ′, this customer has waited w time units before service and
the probability of an unsuccessful service is still the same αi as under π . Therefore,
under π ′, HoL has waited less than under π while having the same probability of
unsuccessful service. All remaining customers have the same waiting times and the
same probabilities of unsuccessful services under both policies. Therefore, π ′ out-
performs π , which proves also that idling the two servers at the same time can never
be optimal under the infinite horizon.

Step 3. In what follows, we prove that there cannot be any changes in the pref-
erence for one server if only one server should work. In other words, we prove that
if server i (i = 1, 2) is preferred when one job is in the system, then server i should
always work.
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Consider a given n for which the computation of the value function leads
to the non-optimality of both servers idling. We therefore have Un(0, 1) =
min(Vn(1, 0),Vn(2, 0)). IfUn(0, 1) = Vn(1, 0) (preference for server 1), then from
Relation (9) for x = 0, i = 2 and j = 1, we obtain Vn(2, 1) ≥ Vn(1/2, 0). This
implies that if two jobs are in the system, it is either optimal to only use server 1 or to
use both servers. Using server 2 only is then not optimal. FromRelation (5) for i = 2,
we may write Vn(2, x + 2) −Vn(1/2, x + 1) ≥ Vn(2, x + 1) −Vn(1/2, x) for x ≥
0. Thus, for x ≥ 0,we haveVn(2, x + 1) −Vn(1/2, x) ≥ Vn(2, 1) −Vn(1/2, 0) ≥ 0.
This proves that using server 2 only is never the optimal strategy. The same reason-
ing holds if Un(0, 1) = Vn(2, 0) (preference for server 2). This finishes Step 3 and
the proof of the Theorem.

3.3. Numerical illustration

In Figure 1, we illustrate the optimal policy as a function of the couple (λ, x). We
compute Vn(., .) using Equation (2) and stop the iterations until the following cri-
terion is met

max
i,x

{Vn+1(i, x) −Vn(i, x)} − min
i,x

{Vn+1(i, x) −Vn(i, x)} < ε,

for ε = 10−6. Figure 1(a) illustrates a situation where server 2 is prioritized since
this server is at the same time the fastest and the most efficient. Figure 1(b) illus-
trates a situation where server 1 is prioritized although this server is the slowest.
As expected, we observe in both situations that the number of states, where both
servers should work, increases with the arrival rate.

Note that there is no known simple expression for the optimal threshold nor sim-
ple criterion for which server to prioritize. This can be seen in the iterative compu-
tation of the value function. If μ1 > μ2, we obtain for n = 2,

V2(2, 0) −V2(1, 0) = cR
λ

(μ1 − μ2) + (1 + λ)(α2μ2 − α1μ1) + μ1μ2(α2 − α1).

This expression already gives the idea that if server 1 has at the same time the
highest service rate (μ1 > μ2), the lowest unsuccessful throughput (α1μ1 < α2μ2)
and the lowest probability of an unsuccessful service (α1 < α2), then this server
should be prioritized. This is however only a necessary condition. As n increases, the

Figure . Optimal Thresholds (μ1 = 2,μ2 = 5, cR = 0.005λ).
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Table . Effect of the routing decisions.

Queue size condition Decision epoch Decision Decision effect

x < u Two servers idle after a
service completion or
upon a task arrival and
x = 0

Route a task to the server
which minimizes αμ

Reduce number of
unsatisfied customers
per time unit

x < u Two servers idle after a
service completion or at
a task arrival and x = 0

Route a task to the faster
server

Reduce service time

x ≥ u One server idle after a
service completion or at
a task arrival

Route a task to the
remaining idle server

Reduce waiting time

expression of Vn(2, 0) −Vn(1, 0) does not allow to determine a simple necessary
and sufficient criterion for prioritizing server 1. The same complexity holds when
it comes to determining if the two servers should both work. It can be seen in the
following expression, for n = 2 and μ1 > μ2,

V2(1/2, 0) −V2(1, 1) = −cR
λ

(μ2 + λ) + α2μ2(2 − μ2) − α1μ
2
1.

This expression indicates that the slower is the fastest server (server 1 here) or the
more successful is the slowest server, the more likely the choice would be for having
both servers working.

In Table 2, we summarize the effect of the routing choices on the performance
measures.

4. Conclusion

The optimal job routing for the two heterogeneous server problem with quality of
resolution follows a threshold policy on the queue size, defined by the threshold u
(u > 0). After a service completion, if two servers are idling and x jobs are in the
queue (0 < x < u) or after a job arrival at an empty queue and the two servers are
idling, it is optimal to route a job to only one of the two servers. The server to be
prioritized depends on the relative importance given to the expected time spent in
the system in comparison with the unsatisfied rate. After a service completion or an
arrival, if x ≥ u, it is optimal to have the two servers busy.

The optimal routing is intuitive. When the queue size is small, the expected wait-
ing time is small for arriving jobs and the main concern of the manager is then to
minimize the unsatisfied customers rate or the service times. Above the threshold
on the queue size, the major problem for themanager becomes the waiting time and
the two servers are then both requested to reduce it.

An interesting but challenging topic for future research is to extend the results to
the multi-server case. It would be also interesting to consider the control problem
in a more general context with customer abandonments.
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